Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
algcurves[AbelMap] - compute the Abel map between two points on a Riemann surface
Calling Sequence
AbelMap(F, x, y, P, P_0, t, accuracy)
Parameters
F
-
irreducible polynomial in x and y specifying a Riemann surface by F(x,y) = 0
x
variable
y
P
Puiseux representation, in a parameter t of a point on the Riemann surface specified by F(x,y)=0
P_0
same as P
accuracy
number of desired accurate decimal digits
Description
The AbelMap command computes the Abel map between two points P and P_0 on a Riemann surface R of genus g, that is a g-tuple of complex numbers. The jth element of the Abel map is the integral of the jth normalized holomorphic differential integrated along a path from P to P_0.
The Riemann surface is entered as F; an irreducible, square-free polynomial in x and y. Floating point numbers are not allowed as coefficients of F. Algebraic numbers are allowed. Curves of arbitrary finite genus with arbitrary singularities are allowed.
The points P and P_0 are entered as , where a and b are constants, and r is an integer. If r < 0, that is, if entering one of the points for , then a = 0.
The differentials are normalized such that the jth differential integrated around the kth cycle, as given by algcurves[homology], is Kronecker delta (j, k).
Note: The Abel map will almost always be computed along with other objects associated with some polynomial F, such as the Riemann matrix. It is imperative that the order of the differential be the same for each of the objects, and at each stage of the calculation. As no order is imposed by algcurves[differentials], make sure to compute AbelMap and, for instance algcurves[periodmatrix], without a restart (or quit) in between.
Notes
This command is based on code written by Bernard Deconinck, Michael A. Nivala, and Matthew S. Patterson.
Examples
Give a look first at the genus
Compute the Abel map for this curve
See Also
algcurves, algcurves[differentials], algcurves[genus], algcurves[puiseux]
Download Help Document