Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
WeierstrassP - The Weierstrass P function, P(z,g2,g3)
WeierstrassPPrime - The Derivative of the Weierstrass P function, P'(z,g2,g3)
WeierstrassZeta - The Weierstrass zeta function, zeta(z,g2,g3)
WeierstrassSigma - The Weierstrass sigma function, sigma(z,g2,g3)
Calling Sequence
WeierstrassP(z, g2, g3)
WeierstrassPPrime(z, g2, g3)
WeierstrassZeta(z, g2, g3)
WeierstrassSigma(z, g2, g3)
Parameters
z
-
algebraic expression
g2, g3
algebraic expressions (invariants)
Description
WeierstrassP (Weierstrass elliptic function), WeierstrassPPrime, WeierstrassZeta, and WeierstrassSigma are defined by
where sums and products range over such that is in . WeierstrassP and WeierstrassPPrime are elliptic functions (also known as doubly periodic functions) with periods and .
Quantities g2 and g3 are known as the invariants and are related to and by
where sums range over such that is in .
An important property of the invariants g2 and g3 is that WeierstrassP satisfies the differential equation
A special case of WeierstrassP happens when the discriminant is equal to zero, in which case and are related, can be expressed in terms of a single parameter, say , and the function is given by
Refer to Chapter 18, "Weierstrass Elliptic and Related Functions" of Handbook of Mathematical Functions edited by Abramowitz and Stegun for more extensive information.
Examples
See Also
EllipticF, EllipticK, EllipticPi, JacobiSN
Download Help Document