Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Overview of the SumTools[Hypergeometric] Subpackage
Calling Sequence
SumTools[Hypergeometric][command](arguments)
command(arguments)
Description
The SumTools[Hypergeometric] subpackage provides tools for finding closed forms of definite and indefinite sums of hypergeometric type. It can also be used for certifying and proving combinatorial identities. The subpackage consists of three main components:
- Normal forms of rational functions and of hypergeometric terms: MultiplicativeDecomposition, PolynomialNormalForm, RationalCanonicalForm, SumDecomposition
- Algorithms for definite and indefinite sums of hypergeometric type: ExtendedGosper, ExtendedZeilberger, Gosper, IsZApplicable, KoepfGosper, KoepfZeilberger, LowerBound, MinimalZpair, Zeilberger, ZeilbergerRecurrence, ZpairDirect
- Applications: DefiniteSum, IndefiniteSum, WZMethod
Other commands that deal with hypergeometric terms include: AreSimilar, ConjugateRTerm, EfficientRepresentation, IsHolonomic, IsHypergeometricTerm, IsProperHypergeometricTerm, RegularGammaForm, Verify
Each command in the SumTools[Hypergeometric] subpackage can be accessed by using either the long form or the short form of the command name in the command calling sequence.
Since the underlying implementation of the SumTools[Hypergeometric] subpackage is a module, it is also possible to use the form SumTools:-Hypergeometric:-command or SumTools[Hypergeometric]:-command to access a command. For more information, see Module Members.
List of SumTools[Hypergeometric] Subpackage Commands
The following is a list of available commands.
AreSimilar
BottomSequence
ConjugateRTerm
DefiniteSum
EfficientRepresentation
ExtendedGosper
Gosper
IndefiniteSum
IsHolonomic
IsHypergeometricTerm
IsProperHypergeometricTerm
IsZApplicable
KoepfGosper
KoepfZeilberger
MinimalTelescoper
MinimalZpair
MultiplicativeDecomposition
PolynomialNormalForm
RationalCanonicalForm
RegularGammaForm
SumDecomposition
Verify
WZMethod
Zeilberger
ZeilbergerRecurrence
ZpairDirect
To display the help page for a particular Hypergeometric command, see Getting Help with a Command in a Package.
Examples
Definite sum example:
Construct the Apery's recurrence.
Replace n by in .
The above recurrence equation is required in the proof of the irrationality of Zeta(3).
See Also
help, LREtools, rsolve, sum, SumTools, UsingPackages, with
References
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings of ICMS'2002, pp. 319-329. World Scientific, 2002.
Le, H.Q.; Abramov, S.A.; and Geddes, K.O. "HypergeometricSum: A Maple Package for Finding Closed Forms of Indefinite and Definite Sums of Hypergeometric Type." Technical Report CS-2001-24. Ontario: Department of Computer Science, University of Waterloo, 2001.
Download Help Document