Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[MultivariateCalculus][ChangeOfVariables] - return the change of variables of a multivariate integral function or algebraic expression
Student[MultivariateCalculus][Revert] - return to previous form of multivariate integral
Calling Sequence
ChangeOfVariables(f, g)
ChangeOfVariables(f, h)
Revert(m)
Parameters
f
-
algebraic expression or inert multiple integral
g
list of equations
h
list of indexed names
m
inert integral with unevaluated region of integration
Description
The ChangeOfVariables command returns a new integral or algebraic expression specified by the change of variables equations.
The second parameter of the command can be either a list of equations representing a suitable transformation or a list with two entries containing coordinate systems.
In the first form, the transformation equations must specify new variable names for any coordinate that is to be changed; unchanged variables can be omitted from the transformation or given in the form of an identity equation, such as . For example, ChangeOfVariables(Int(Int(a*x,x),y), [u=a*x]) is valid, as is ChangeOfVariables(Int(Int(a*x,x),y), [u=a*x,y=y]), but ChangeOfVariables(Int(Int(a*x,x),y), [y=a*x,x=y]) is not.
The coordinate systems available are cartesian and polar for two dimensions, and cartesian, cylindrical, and spherical for three dimensions.
The coordinate systems must be specified in the form [OldCoordinateSystem[OldVariables],NewCoordinateSystem[NewVariables]]. Examples:
* [polar[r,theta], cartesian[x,y]]
* [cylindrical[r,theta,u], cartesian[x,y,z]]
* [spherical[R,theta1,phi], cylindrical[r,theta2,z]]
In the polar, cylindrical, and spherical coordinate systems, the first variable is assumed to be the radial component.
In general, when working with definite integrals, it is not always possible to find a new region of integration after applying a change of variables. Thus, if ChangeOfVariables cannot find the new region of integration, it retains the old region and indicates that the region has not been converted. If this occurs, use the Revert function to return to the previous integral before ChangeOfVariables was applied. Revert only works on integrals where the region of integration cannot be found. Otherwise, the same integral is returned.
Examples
See Also
PDEtools[dchange], Student, Student[MultivariateCalculus]
Download Help Document