Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Statistics[ChiSquareIndependenceTest] - apply the chisquare test for independence in a matrix
Calling Sequence
ChiSquareIndependenceTest(X, options)
Parameters
X
-
Matrix of categorized data
options
(optional) equation(s) of the form option=value where option is one of level or output; specify options for the ChiSquareIndependenceTest function
Description
The ChiSquareIndependenceTest function computes the chisquare test for independence in a matrix. This test attempts to determine if two factors can be considered to be independent of one another for purposes of analysis.
The first parameter X is a matrix of categorized data samples.
Options
The options argument can contain one or more of the options shown below.
level=float
This option is used to specify the level of the analysis (minimum criteria for a data set to be considered independent). By default this value is 0.05.
output='report', 'statistic', 'pvalue', 'criticalvalue', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'criticalvalue', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
Notes
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1.
Examples
Specify the matrices of categorized data values.
Perform the independence test on the first sample.
Chi-Square Test for Independence -------------------------------- Null Hypothesis: Two attributes within a population are independent of one another Alt. Hypothesis: Two attributes within a population are not independent of one another Dimensions: 3 Total Elements: 95 Distribution: ChiSquare(2) Computed statistic: 10.7122 Computed pvalue: 0.00471928 Critical value: criticalvalue Result: [Rejected] There exists statistical evidence against the null hypothesis
Perform the independence test on the second sample.
Chi-Square Test for Independence -------------------------------- Null Hypothesis: Two attributes within a population are independent of one another Alt. Hypothesis: Two attributes within a population are not independent of one another Dimensions: 3 Total Elements: 38 Distribution: ChiSquare(2) Computed statistic: 0.128915 Computed pvalue: 0.937576 Critical value: criticalvalue Result: [Accepted] There is no statistical evidence against the null hypothesis
See Also
Statistics, Statistics[Computation]
References
Kanju, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
Download Help Document