Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Slode[mhypergeom_formal_sol] - formal solutions with m-hypergeometric series coefficients for a linear ODE
Calling Sequence
mhypergeom_formal_sol(ode, var, opts)
mhypergeom_formal_sol(LODEstr, opts)
Parameters
ode
-
homogeneous linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
opts
optional arguments of the form keyword=value
LODEstr
LODEstruct data-structure
Description
The mhypergeom_formal_sol command returns formal solutions with m-hypergeometric series coefficients for the given homogeneous linear ordinary differential equation with polynomial coefficients.
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be homogeneous and linear in var
ode must have polynomial coefficients in the independent variable of var, for example,
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
A homogeneous linear ordinary differential equation with coefficients that are polynomials in has a basis of formal solutions (see DEtools[formal_sol]). A formal solution contains a finite number of power series where is a parameter and the sequence satisfies a linear recurrence (homogeneous or inhomogeneous).
This routine selects so-called "nice" solutions, that is, solutions that contain series where for all sufficiently large , where is an integer and is a rational function.
The routine determines an integer such that , , ..., can be represented in the form of hypergeometric terms (see SumTools[Hypergeometric], LREtools):
for and all .
Options
'parameter'=T
Specifies the name T that is used to denote where is a constant and is called the ramification index. If this option is given, then the routine expresses the formal solutions in terms of T and returns a list of lists each of which is of the form [formal solution, relation between T and x]. Otherwise, it returns the formal solutions in terms of .
x=a or 'point'=a
Specifies the expansion point a. The default is . It can be an algebraic number, depending rationally on some parameters, or .
'free'=C
Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.
'indices'=[n,k]
Specifies names for dummy variables. The default values are the global names _n and _k. The name n is used as the summation index in the power series. The name k is used as the product index in ( * ).
'outputHGT'=name
Specifies the form of representation of hypergeometric terms. The default value is 'active'.
'inert' - the hypergeometric term ( * ) is represented by an inert product, except for , which is simplified to .
'rcf1' or 'rcf2' - the hypergeometric term is represented in the first or second minimal representation, respectively (see ConjugateRTerm).
'active' - the hypergeometric term is represented by non-inert products which, if possible, are computed (see product).
Examples
See Also
DEtools[formal_sol], LODEstruct, Slode, Slode[dAlembertian_formal_sol], Slode[hypergeom_formal_sol], Slode[mhypergeom_series_sol], SumTools[Hypergeometric]
Download Help Document