Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[MatrixCombine] - equiprojectable decomposition of a list of regular chains
Calling Sequence
MatrixCombine(lrc, R)
MatrixCombine(lrc, R, lm)
Parameters
R
-
polynomial ring
lrc
list of regular chains of R
lm
list of matrices with coefficients in R
Description
The function call MatrixCombine(lrc, R, lm) returns the equiprojectable decomposition of the variety given by lrc, and the corresponding combined matrices.
The variety encoded by lrc is the union of the regular zero sets of the regular chains of lrc.
It is assumed that every regular chain in lrc is zero-dimensional and strongly normalized, and that all matrices in lm have the same format.
It is also assumed that lrc and lm have the same number of elements.
This command is part of the RegularChains package, so it can be used in the form MatrixCombine(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[MatrixCombine](..).
Examples
Consider a polynomial ring with three variables
Consider the following four regular chains of R
Consider the following four matrices over R
We view each matrix as a result obtained modulo the corresponding regular chain in the given order. We combine these four results as follows
The four cases cannot be combined into a single one. In fact, we obtained the following two cases
The two ideals generated by rc1 and rc2 are obviously relatively prime (no common roots in z) so the Chinese Remaindering Theorem applies. However, if we try to recombine them, we create a polynomial in y with a zero-divisor as initial. This is forbidden by the properties of a regular chain.
See Also
Equations, EquiprojectableDecomposition, ExtendedRegularGcd, Matrix, PolynomialRing, RegularChains, Triangularize
Download Help Document