Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[Inverse] - inverse of a polynomial with respect to a regular chain
Calling Sequence
Inverse(p, rc, R)
Inverse(p, rc, R, 'normalized'='yes')
Parameters
R
-
polynomial ring
rc
regular chain of R
p
polynomial of R
'normalized'='yes'
boolean flag (optional)
Description
The function call Inverse(p, rc, R) returns a list . The list consists of pairs such that equals modulo the saturated ideal of , where is regular with respect to . The list is a list of regular chains such that p is a zero-divisor modulo . In addition, the set of all regular chains occurring in and is a triangular decomposition of rc. To be precise, they form a decomposition of rc in the sense of Kalkbrener.
If is passed, then the regular chain rc must be normalized. In addition, all the returned regular chains will be normalized.
If the regular chain rc is normalized but is not passed, then there is no guarantee that the returned regular chains will be normalized.
For zero-dimensional regular chains in prime characteristic, the commands RegularizeDim0 and NormalizePolynomialDim0 can be combined to obtain the same specification as the command Inverse while gaining the advantages of modular techniques and asymptotically fast polynomial arithmetic.
This command is part of the RegularChains package, so it can be used in the form Inverse(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[Inverse](..).
Examples
See Also
Chain, ChainTools, Empty, Equations, IsRegular, IsStronglyNormalized, MatrixInverse, NormalForm, NormalizePolynomialDim0, PolynomialRing, RegularChains, RegularizeDim0
Download Help Document