Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][NormalizeRegularChainDim0] - normalize a zero-dimensional regular chain
Calling Sequence
NormalizeRegularChainDim0(rc, R)
Parameters
R
-
polynomial ring
rc
a regular chain of R
Description
Returns a normalized regular chain generating the same ideal as rc.
rc is a zero-dimensional non-empty regular chain.
Moreover R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f and rc are, the larger must be such that divides . If the degree of f or rc is too large, then an error is raised.
Examples
We solve a system in 3 variables and 3 unknowns
Its triangular decomposition consists of only one regular chain
Each initial is not equal to 1, hence this regular chain is not normalized
We compute here a regular chain which is normalized and which describes the same solution as the previous one
We check that it is normalized
We check that the two regular chains describe the set of solutions
See Also
NormalForm, NormalFormDim0, NormalizePolynomialDim0, ReduceCoefficientsDim0, RegularChains
Download Help Document