Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[SemiAlgebraicSetTools][LinearSolve] - solve a linear semi-algebraic system
Calling Sequence
LinearSolve(F, R)
Parameters
F
-
list of linear equations, inequations and inequalities of R
R
polynomial ring
Description
LinearSolve(F, R) returns an equivalent linear semi-algebraic system of triangular shape to the input linear semi-algebraic system F. This assume that R is the field of rational numbers.
The output linear triangular semi-algebraic system satisfies the following properties: Firstly, the output constraints are still linear and are sorted in an ascending order according to the largest variable appearing in them. Secondly, the projection of the solutions of input system F onto any lower dimensional space, say the space formed by the smallest variables, are exactly the solutions of those constraints in the output which only involve the smallest smallest variables. The algorithm behind this function is a variant of Fourier-Motzkin elimination.
Compatibility
The RegularChains[SemiAlgebraicSetTools][LinearSolve] command was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
Define a ring of polynomials. The order of variables is z>y>x.
Define a set of linear equations and inequalities.
We eliminate variables according to the order z>y>x.
The output is a set of equivalent linear equations and inequalities sorted in ascending order according to the larget variables appearing in the constraints. It provides conditions on lower order variables such that higher order variables having solutions.
See Also
CylindricalAlgebraicDecompose, Projection , RealTriangularize , SemiAlgebraicSetTools, SuggestVariableOrder, Triangularize
Download Help Document