Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ParametricSystemTools][PreComprehensiveTriangularize] - compute a pre-comprehensive triangular decomposition
Calling Sequence
PreComprehensiveTriangularize(sys, d, R)
Parameters
sys
-
list of polynomials
d
number of parameters
R
polynomial ring
Description
The command PreComprehensiveTriangularize(sys, d, R) returns a pre-comprehensive triangular decomposition of sys, with respect to the last d variables of R.
A pre-comprehensive triangular decomposition is a refined triangular decomposition (in the Lazard sense) with additional properties, aiming at studying parametric polynomial systems.
Let be the last d variables of R, which we regard as parameters. A finite set of regular chains of R forms a pre-comprehensive triangular decomposition of F with respect to U, if for every parameter value , there exists a subset of such that
(1) the regular chains of specialize well at , and
(2) after specialization at , these chains form a triangular decomposition (in the Lazard sense) of the polynomial system specialized at . See the command DefiningSet for the term specialize well.
Examples
A pre-comprehensive triangular decomposition of consists of three regular chains.
Compare it with the output of Triangularize.
See Also
ComprehensiveTriangularize, ConstructibleSet, DefiningSet, DiscriminantSet, Info, RegularChains, Triangularize
Download Help Document