Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ParametricSystemTools][DefiningSet] - compute the defining set of a regular chain
Calling Sequence
DefiningSet(rc, d, R)
Parameters
rc
-
regular chain
d
number of parameters
R
polynomial ring
Description
The command DefiningSet(rc, d, R) returns the defining set of rc with respect to the last d variables, regarded as parameters. This is a constructible set .
Given a positive integer d, the regular chain rc can be split into two parts. Denote by the set of the polynomials in rc involving only the last d variables, and denote by the other polynomials of rc. Certainly, both and are regular chains.
Let be the quasi-component of . For a point in , after specializing at , two situations arise:
(1) either is not a regular chain anymore;
(2) or is still a regular chain.
There is a subtle point: after specializing at , it might happen that it is still a regular chain, but its shape changes. In other words, the degree of the geometric object given by could change. The term specialize well, defined below, takes these cases into account.
The regular chain rc specializes well at a point of if is a regular chain after specialization and no initial of polynomials in rc1 vanish during the specialization.
The defining set of rc with respect to the last d variables consists of the points in at which rc specializes well.
This command is part of the RegularChains[ParametricSystemTools] package, so it can be used in the form DefiningSet(..) only after executing the command with(RegularChains[ParametricSystemTools]). However, it can always be accessed through the long form of the command by using RegularChains[ParametricSystemTools][DefiningSet](..).
Examples
Consider the following parametric polynomial system F.
For different values of u and v, the solution set has a different nature. For example, u=0 and v=0 is a degenerate case: x=0 and y can be any value. To understand more about F, first decompose F into a set of regular chains.
The first regular chain is simple. For all values of u and v, it is well-specialized.
For the last one, its defining set is given by and , and the inequality is to ensure that rc1 specializes well.
See Also
ComprehensiveTriangularize, ConstructibleSet, DiscriminantSet, Info, ParametricSystemTools, PreComprehensiveTriangularize, RegularChains, Triangularize
Download Help Document