Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[MatrixTools][MatrixInverse] - compute the inverse of a matrix modulo a regular chain
Calling Sequence
MatrixInverse(A, rc, R)
Parameters
A
-
square Matrix with coefficients in the ring of fractions of R
rc
regular chain of R
R
polynomial ring
Description
The command MatrixInverse(A, rc, R) returns two lists.
The first list the command returns is a list of pairs where is a regular chain and is the inverse of A modulo the saturated ideal of .
The second list the command returns is a list of triplets where is a regular chain and A is the input matrix such that A is not invertible modulo the saturated ideal of .
All the returned regular chains form a triangular decomposition of rc (in the sense of Kalkbrener).
It is assumed that rc is strongly normalized.
The algorithm is an adaptation of the algorithm of Bareiss.
This command is part of the RegularChains[MatrixTools] package, so it can be used in the form MatrixInverse(..) only after executing the command with(RegularChains[MatrixTools]). However, it can always be accessed through the long form of the command by using RegularChains[MatrixTools][MatrixInverse](..).
Examples
Automatic case discussion.
Assume we have two variables y and z that have the same square and z is a 4th root of -1. Suppose we need to compute modulo this relation.
We want to compute the inverse of the previous matrix.
Let us check the first result.
Consider now this other matrix.
Get a generic answer that would hold both cases.
Check.
See Also
Chain, Empty, Equations, IsStronglyNormalized, IsZeroMatrix, JacobianMatrix, LowerEchelonForm, MatrixCombine, MatrixMultiply, MatrixOverChain, MatrixTools, NormalForm, PolynomialRing, RegularChains
Download Help Document