Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][BivariateModularTriangularize] - triangular decomposition of a bivariate square system by a modular method
Calling Sequence
BivariateModularTriangularize(F, R)
Parameters
R
-
polynomial ring
F
bivariate square system of R
Description
The command BivariateModularTriangularize(F, R) returns a triangular decomposition of F in R. See the command Triangularize and the page RegularChains for the concept of a triangular decompostion.
F consists of two bivariate polynomials f1 and f2 of R. No other assumptions are required.
R must have only two variables and no parameters.
Moreover R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger must be such that divides . If the degree of f1 or f2 is too large, then an error is raised.
The algorithm is deterministic (i.e. non-probabilistic) and uses modular techniques together with asymptotically fast polynomial arithmetic.
When both Triangularize and BivariateModularTriangularize apply, the latter command is very likely to outperform the former one.
Examples
Define a ring of polynomials.
Define two polynomials of R.
Compute a triangular decomposition of this system
Check the number of solutions
See Also
GeneralConstruct, RegularChains, RegularizeDim0, Triangularize
Download Help Document