Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ConstructibleSetTools][MakePairwiseDisjoint] - make the defining regular systems in a constructible set pairwise disjoint
Calling Sequence
MakePairwiseDisjoint(cs, R)
Parameters
cs
-
constructible set
R
polynomial ring
Description
The command MakePairwiseDisjoint(cs, R) returns a constructible set cs1 such that cs1 and cs are equal and the regular systems representing cs1 are pairwise disjoint.
Generally, in a constructible set, there is some redundancy among its components defined by regular systems. By default, functions on constructible sets do not remove redundancy because such a computation is expensive.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form MakePairwiseDisjoint(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][MakePairwiseDisjoint](..).
Examples
First, define the polynomial ring.
Consider the following almost general linear equations. They are not completely general, since their constant term, namely , is the same.
After projecting the variety defined by and into the parameter space given by the last 5 variables, you can see when such general linear equations have solutions after specializing the last 5 variables.
There are 9 regular systems defining the image cs of the projection. To remove common parts of these regular systems, use MakePairwiseDisjoint.
Now, there are 10 components.
Notice that some components have split during the redundancy removal.
See Also
ConstructibleSet, ConstructibleSetTools, GeneralConstruct, Projection, RefiningPartition, RegularChains
Download Help Document