Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[IsRadical] - test whether an ideal is radical
PolynomialIdeals[Radical] - compute the radical of an ideal
PolynomialIdeals[RadicalMembership] - test for membership in the radical
Calling Sequence
IsRadical(J)
Radical(J)
RadicalMembership(f, J)
Parameters
J
-
polynomial ideal
f
polynomial
Description
The IsRadical command tests whether a given ideal is radical. An ideal J is radical if in J implies f in J for all f in the polynomial ring. Similarly, the radical of J is the ideal of polynomials f such that is in J for some integer m. This can be computed using the Radical command.
The RadicalMembership command tests for membership in the radical without explicitly computing the radical. This command can be useful in cases where computation of the radical cannot be performed.
The algorithms employed by Radical and IsRadical are based on the algorithm for prime decomposition, and require only a single lexicographic Groebner basis in the zero-dimensional case. In practice, this means that computing the radical is no harder than computing a decomposition, and that both can be computed using the same information.
The Radical and IsRadical commands require polynomials over a perfect field. Infinite fields of positive characteristic are not supported, and over finite fields only zero-dimensional ideals can be handled because the dimension reducing process generates infinite fields. These restrictions do not apply to the RadicalMembership command.
Compatibility
The PolynomialIdeals[IsRadical], PolynomialIdeals[Radical] and PolynomialIdeals[RadicalMembership] commands were updated in Maple 16.
Examples
See Also
Groebner[Basis], map, PolynomialIdeals, PolynomialIdeals[HilbertDimension], PolynomialIdeals[IdealContainment], PolynomialIdeals[IdealMembership], PolynomialIdeals[Intersect], PolynomialIdeals[PrimeDecomposition], PolynomialIdeals[ZeroDimensionalDecomposition]
References
Cox, D.; Little, J.; and O'Shea, D. Ideals, Varieties, and Algorithms. 2nd ed. New York: Springer-Verlag, 1997.
Gianni, P.; Trager, B.; and Zacharias, G. "Grobner bases and primary decompositions of polynomial ideals." J. Symbolic Comput. Vol. 6, (1988): 149-167.
Download Help Document