Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
OreTools[Modular][FractionFreeRightEucliean] - perform a fraction-free version of right Euclidean algorithm (usual, half-extended, and extended) modulo a prime
OreTools[Modular][RightEuclidean] - perform right Euclidean algorithm (usual, half-extended, and extended)
Calling Sequence
Modular[FractionFreeRightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2')
Modular[RightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2')
Parameters
Poly1, Poly2
-
nonzero Ore polynomials; to define an Ore polynomial, use the OrePoly structure
p
prime
A
Ore algebra; to define an Ore algebra, use the SetOreRing command
'c1', 'c2'
(optional) unevaluated names
Description
Modular[FractionFreeRightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2') calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the subresultant sequence of the first kind of Poly1 and Poly2.
The Modular[FractionFreeRightEuclidean] command requires that Poly1 and Poly2 be fraction-free, and that the commutation rule of the Ore algebra A also be fraction-free.
If the optional fourth argument to the FractionFreeRightEuclidean command c1 is specified, it is assigned the first co-sequence of Poly1 and Poly2 so that:
and c1[m+1] Poly2 is a least common left multiple (LCLM) of Poly1 and Poly2.
If the optional fifth argument to the FractionFreeRightEuclidean command c2 is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:
and c1[m+1] Poly2 = - c2[m+1] Poly1 mod p is an LCLM of Poly1 and Poly2.
Modular[RightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2') calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the right Euclidean polynomial remainder sequence of Poly1 and Poly2.
If the optional fifth argument to the Modular[RightEuclidean] command c2 is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:
Examples
Check the co-sequences.
Check the LCLM.
Try fraction-free right Euclidean algorithm.
See Also
OreTools, OreTools/Divisions, OreTools/Modular, OreTools/OreAlgebra, OreTools/OrePoly, OreTools[SetOreRing]
References
Li, Z. "A subresultant theory for Ore polynomials with applications." Proc. of ISSAC'98, pp.132-139. Edited by O. Gloor. ACM Press, 1998.
Download Help Document