Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[ScalarMatrix] - construct a scalar multiple of an identity Matrix
LinearAlgebra[ScalarVector] - construct a scalar multiple of a unit Vector
Calling Sequence
ScalarMatrix(s, r, c, cpt, options)
ScalarVector[o](s, i, d, cpt, options)
Parameters
s
-
algebraic expression; constant value for the Matrix or Vector
i
positive integer; index of the non-zero entry in the Vector
d
positive integer; dimension of the resulting Vector
r
(optional) non-negative integer; row dimension of the resulting Matrix
c
(optional) non-negative integer; column dimension of the resulting Matrix
cpt
(optional) BooleanOpt(compact); selects the compact form of the output
[o]
(optional) use either [row] or [column] to specify the orientation of the resulting Vector
options
(optional); constructor options for the result object
Description
The ScalarMatrix(s, r, c) function returns an r x c Matrix in which all of the entries on the diagonal have the value s and all other entries are zero.
If the row dimension is not provided, it defaults to zero. If the column dimension is not provided, it defaults to the row dimension.
The ScalarVector(s, i, d) function returns a d-dimensional Vector in which the ith entry is s and all other entries are 0.
The ScalarVector[row](s, i, d) function acts like ScalarVector(s, i, d) except that a row Vector is returned. If the orientation option is omitted or if ScalarVector[column](s, d) is used, a column Vector is returned.
If the compact option (cpt) is omitted, or, if it is included in the calling sequence as just the symbol compact or in the form compact=true, then the result is built by using a shape function designed to minimize storage. If the option is entered as compact=false, a full rectangular object is constructed.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix or Vector constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
If a shape value is not provided, then the shape of the resulting object is determined by the compact option. Otherwise, a result with the specified shape is constructed with the appropriate entries set to const.
If readonly=false is included, it is ignored unless the default shape (scalar) is overridden by also including a mutable shape in options.
This function is part of the LinearAlgebra package, and so it can be used in the form ScalarMatrix(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[ScalarMatrix](..).
Examples
See Also
LinearAlgebra[IdentityMatrix], LinearAlgebra[UnitVector], Matrix, Vector
Download Help Document