Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Permanent] - compute the permanent of a square Matrix
Calling Sequence
Permanent(A)
Parameters
A
-
square Matrix
Description
The Permanent(A) function computes the permanent of A.
Similar to the Matrix determinant, the permanent P(A) of an n x n Matrix A can be defined in terms of a sum along any row or column, with unsigned minor expansion, by the following definition.
For any i in 1 .. n,
where
A_(i, j) is the i, jth minor of A given by
which is A with the ith row and jth column removed.
This definition differs from that of the Determinant only by the absence of alternating signs of the terms in the sum.
This function is part of the LinearAlgebra package, and so it can be used in the form Permanent(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[Permanent](..).
Examples
See Also
LinearAlgebra[Determinant], LinearAlgebra[Minor], Matrix
Download Help Document