Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[LyapunovSolve] - solve the continuous Lyapunov equation
Calling Sequence
LyapunovSolve( A, C )
LyapunovSolve( A, C, isgn )
LyapunovSolve( A, C, isgn, outopts, tranA, schurA )
Parameters
A
-
Matrix; input matrix of dimension m x m
C
Matrix; second input matrix of dimension m x m
isgn
(optional) {-1,1}; indicates the sign of the term X . A (second term)
outopts
(optional); constructor options for Matrix output
tranA
(optional) `transpose[A]` = {truefalse,identical(transpose,hermitiantranspose)} ; specifies operation on A prior to solving
schurA
(optional) `Schur[A]` = truefalse; specifies whether A is in Schur form
Description
The LyapunovSolve command computes the solution to the continuous Lyapunov matrix equation
The returned solution is an expression sequence consisting of the Matrix X followed by the scalar scale.
This routine operates in the floating-point domain. Hence, the entries in the Matrix arguments must necessarily be of type complex(numeric).
The continuous Lyapunov equation is a special case of the Sylvester equation.
Options
The isgn argument designates the sign of the second term of the left hand side of the equation. The default value of this argument is 1.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
The tranA argument specifies whether the first Matrix argument A should be transposed prior to solving. The default value of this argument is false.
The schurA argument specifies whether to omit reduction of the first Matrix argument to Schur form. This avoids unnecessary computation in the case that the first Matrix argument is already in Schur form. The default value of this argument is false.
Examples
Warning, Matrices have common or very close eigenvalues; perturbed values were used to solve the equation
See Also
LinearAlgebra, LinearAlgebra[SchurForm], LinearAlgebra[SylvesterSolve]
Download Help Document