Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Modular][IntegerLinearSolve] - solution of a linear integer coefficient system using modular methods
Calling Sequence
IntegerLinearSolve(A, rcol, meth)
Parameters
A
-
Matrix (possibly augmented)
rcol
number of columns that represent variables
meth
(optional) argument of the form method='chrem' or method='padic' (the default)
Description
The IntegerLinearSolve function constructs the rational solution(s) of a linear integer coefficient system in Matrix form. This is a programmer level function, it does not perform argument checking. Thus, argument checking must be handled external to this function.
It is possible to solve systems with an arbitrary number of augmented columns. If one augmented column is present, the output is a Vector with dimension rcol. If multiple augmented columns are present, the output is a Matrix where each column is of length rcol and represents the solution for the corresponding right-hand side vector in the augmented part of the input Matrix.
It is also possible to obtain solutions with free parameters. These free parameters represent the nullspace vectors of the input Matrix, and are output after the solution. In this case, the output is a sequence.
Note: Regardless of the number of augmented columns, the trailing nullspace is described by Vectors with dimension rcol.
The default method is to solve the system modulo a machine-sized prime and construct rational solutions using p-adic lifting. For large linear systems or systems with large solutions this is the fastest method. The optional argument method='padic' forces the use of this method.
Alternatively, one can specify the optional argument method='chrem' and the system will be solved modulo multiple primes and the solution recovered using the Chinese remainder theorem. This method can be faster in some cases; however, it is a probabilistic approach. Information on controlling the probabilistic behavior can be found in EnvProbabilistic.
This function is also available in LinearSolve as method='modular'.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form IntegerLinearSolve(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][IntegerLinearSolve](..).
Examples
A 3x3 system with 1 augmented column.
A 3x3 system with 3 augmented columns.
A rank deficient 3x3 system with 3 augmented columns.
A rank deficient 4x4 matrix which returns nullspace only.
An inconsistent 3x3 system.
Error, (in LinearAlgebra:-Modular:-IntegerLinearSolve) system is inconsistent
See Also
LinearAlgebra/Details, LinearAlgebra[LinearSolve], LinearAlgebra[Modular]
Download Help Document