Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Generic][StronglyConnectedBlocks] - compute the strongly connected blocks of a Matrix
Calling Sequence
StronglyConnectedBlocks[R](A)
Parameters
R
-
the domain of computation
A
a square Matrix of values in R
Description
Viewing A as the adjacency matrix of a weighted directed graph G, first compute the strongly connected components of G: V1, V2, V3, ..., Vk, where Vi = {vi_1, vi_2, vi_3, ..., vi_ni}, the vertices in strongly connected component i. The command then returns the submatrices of A, denoted Ai, where the rows and columns of Ai are rows Vi and columns Vi of A.
The Ai corresponds to the diagonal blocks of some row and column permutations of A.
Zero blocks are not returned in the blocks Ai, instead a count m of the zero blocks is returned such that m = dim(A)-dim(A1)-...-dim(Ak).
If m=0, the returned Ai satisfy:
Determinant(A) = product(Determinant(Ai),i=1..k)
CharacteristicPolynomial(A,x) = product(CharacteristicPolynomial(Ai,x),i=1..k)
If m<>0, the returned Ai satisfy:
Determinant(A) = 0
CharacteristicPolynomial(A,x) = x^m*product(CharacteristicPolynomial(Ai,x),i=1..k)
The (indexed) parameter R, which specifies the domain of computation (the only requirement is that 0 is uniquely defined), must be a Maple table/module which has the following values/exports:
R[`0`] : a constant for the zero of the domain R
R[`=`] : a boolean procedure for testing if two elements of R are equal
Examples
See Also
LinearAlgebra[Generic], LinearAlgebra[StronglyConnectedBlocks]
Download Help Document