Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Generic][Determinant] - compute the determinant of a square Matrix
Calling Sequence
Determinant[R](A)
Determinant[R](A,method=BerkowitzAlgorithm)
Determinant[R](A,method=MinorExpansion)
Determinant[R](A,method=BareissAlgorithm)
Determinant[R](A,method=GaussianElimination)
Parameters
R
-
the domain of computation
A
square Matrix of values in R
Description
The parameter A must be a square (n x n) Matrix of values from R.
The (indexed) parameter R, which specifies the domain of computation, a commutative ring, must be a Maple table/module which has the following values/exports:
R[`0`] : a constant for the zero of the ring R
R[`1`] : a constant for the (multiplicative) identity of R
R[`+`] : a procedure for adding elements of R (nary)
R[`-`] : a procedure for negating and subtracting elements of R (unary and binary)
R[`*`] : a procedure for multiplying elements of R (binary and commutative)
R[`=`] : a boolean procedure for testing if two elements of R are equal
The optional argument method=... specifies the algorithm to be used. The specific algorithms are as follows:
method=MinorExpansion directs the code to use minor expansion. This algorithm uses O(n 2^n) arithmetic operations in R.
method=BerkowitzAlgorithm directs the code to use the Berkowitz algorithm. This algorithm uses O(n^4) arithmetic operations in R.
method=BareissAlgorithm directs the code to use the Bareiss algorithm. This algorithm uses O(n^3) arithmetic operations in R but requires exact division, i.e., it requires R to be an integral domain with the following operation defined:
R[Divide]: a boolean procedure for dividing two elements of R where R[Divide](a,b,'q') outputs true if b | a and optionally assigns q the quotient such that a = b q.
method=GaussianElimination directs the code to use the Gaussian elimination algorithm. This algorithm uses O(n^3) arithmetic operations in R but requires R to be a field, i.e., the following operation must be defined:
R[`/`]: a procedure for dividing two elements of R
If the method is not given and the operation R[Divide] is defined, then the Bareiss algorithm is used, otherwise if the operation R[`/`] is defined then GaussianElimination is used, otherwise the Berkowitz algorithm is used.
Examples
See Also
LinearAlgebra[Determinant], LinearAlgebra[Generic], LinearAlgebra[Generic][BareissAlgorithm], LinearAlgebra[Generic][BerkowitzAlgorithm], LinearAlgebra[Generic][GaussianElimination], LinearAlgebra[Generic][MinorExpansion]
Download Help Document