Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
EllipticNome - Nome function q(k)
Calling Sequence
EllipticNome(k)
Parameters
k
-
expression denoting a complex number
Description
Given the Modulus k, , entering the definition of Elliptic integrals and JacobiPQ functions,
FunctionAdvisor(definition, EllipticF)[1];
FunctionAdvisor(definition, JacobiSN)[1];
FunctionAdvisor(definition, JacobiAM);
EllipticNome computes the corresponding Nome q, , entering the definition of the related (see below) Jacobi Theta functions, for instance:
FunctionAdvisor(definition, JacobiTheta1)[1];
Alternatively, given the Nome q, , it is possible to compute the corresponding Modulus k, , using EllipticModulus, which is the inverse function of EllipticNome.
EllipticNome is defined in terms of the Complete Elliptic integral of the first kind EllipticK by:
FunctionAdvisor( definition, EllipticNome );
The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by and sin(alpha) = k. For example, the Elliptic function shown in A&S is numerically equal to the Maple command.
Examples
See Also
Elliptic integrals, EllipticModulus, FunctionAdvisor, InverseJacobiPQ functions, Jacobi Theta functions, JacobiPQ functions
Download Help Document