Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[Transformation] - create a transformation or mapping from one manifold to another
Calling Sequence
Transformation(M, N, Eq)
Transformation(M, N, A)
Parameters
M
-
an unassigned Maple name or string, the domain for the transformation
N
an unassigned Maple name or string, the range for the transformation
Eq
a list of equations specifying each range variable as a function of the domain variables
A
a Matrix
Description
The Transformation command creates an internal data structure for a mapping between two frames. This internal data structure contains information regarding the transformation (domain, range, prolongation order, transformation type (projectable, point, contact, differential substitution etc.), and the Jacobian of the transformation). Once a mapping between frames has been encoded using the Transformation command, the mapping can then be using to transform vectors, differential forms and tensors using the Pushforward, Pullback, and PushPullTensor commands in the DifferentialGeometry package and in the Tensor subpackage.
If M and N are the names of initialized Lie algebras, then the second calling sequence can be used to define a linear transformation from M to N with matrix representation A.
This command is part of the DifferentialGeometry package, and so can be used in the form Transformation(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-Transformation.
Examples
Define 4 different manifolds:
Example 1.
Define a transformation from R to Q, that is, the parametric representation of a space-curve.
Example 2.
Define a transformation presenting the mapping in the complex plane z -> w = z^3.
We use the real and imaginary parts of w to define the components of the transformation. We can set up the transformation as a map from M to N or as a map from M to itself.
Example 3.
Define a transformation encoding the change from polar to Cartesian coordinates.
Example 4.
Define a transformation from P to Q which parameterizes the hyperboloid of revolution z^2 = 1 + x^2 + y^2.
Example 5.
Define the canonical projection map [x, y, z] -> [x, y] from Q to M.
Example 6.
The command DGinfo can be used to access various attributes of a transformation.
Example 7.
Where an adapted frame is used, the Jacobian is computed relative to that frame. Here is a simple example:
Example 8.
Here we use the second calling sequence to define a Lie algebra homomorphism between two Lie algebras. See the LieAlgebraData help page for information on creating Lie algebras with Maple.
Initialize a Lie algebra Alg1 which will serve as the domain for the Lie algebra homomorphism.
Initialize a Lie algebra Alg2 which will serve as the range for the Lie algebra homomorphism.
Define a matrix which will determine the linear transformation from Alg1 to Alg2.
The output indicates that phi sends e1 to 0f1, e2 to f3, e3 to f2, and e4 to f1 - f3. The LieAlgebras Query command allows us to check that phi is a Lie algebra homomorphism.
See Also
DifferentialGeometry, Tools, ApplyTransformation, ComposeTransformations, DGinfo, InverseTransformation, Pullback, Pushforward, PushPullTensor
Download Help Document