Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry:-Tools[DGequal]
Calling Sequence
DGequal(S1, S2)
Parameters
S1, S2
-
two lists of vectors, differential forms, or tensors; two transformations; two Lie algebra data structures; or two representations
Description
Let S1 and S2 be two lists of vectors, differential forms, or tensors. If every element of S1 is in the span of S2 and every element of S1 is in the span of S2, then DGequal(S1, S2) returns true and otherwise false.
If the two transformations Phi1 and Phi2 have the same domain frame, range frame, and the same coordinate expressions, then DGequal(Phi1, Phi2) returns true and otherwise false. The command DGequal(Phi1, Phi2) computes the differences between the Jacobian matrices and the coordinate equations for the two transformations Phi1 and Phi2 and tests if these differences are zero.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGequal(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGequal.
Examples
Example 1.
First initialize a 4-dimensional manifold M with coordinates [x, y, z, w].
Show that the vector subspaces spanned by the lists of vectors S1 and S2 are the same.
Show that the subspaces of differential forms spanned by the lists of 2-forms S3 and S4 are not the same.
Example 2.
First initialize manifolds M and N with coordinates [x, y] and [u, v].
Show that the transformations Phi1 and Phi2 are the same.
Show that the transformations Phi3 and Phi4 are not the same without assuming that x > 0.
Example 3.
Define two Lie algebras data structures. Check that they are equal.
Example 4.
Define two representations of a Lie algebra and test for equality. First define the Lie algebra.
Define the representation space V.
Make a change of basis in the representation space.
The representations rho1 and rho2 are equivalent but they are not equal.
See Also
DifferentialGeometry, Tools, LieAlgebras, LieAlgebraData Representation, Transformation
Download Help Document