Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[TorsionTensor] - calculate the torsion tensor for a linear connection on the tangent bundle
Calling Sequences
TorsionTensor(C)
Parameters
C - a connection on the tangent bundle to a manifold
Description
Let M be a manifold and let nabla be a linear connection on the tangent bundle of M. The torsion tensor S of nabla is the rank 3 tensor (contravariant rank 1, covariant rank 2) defined by S(X, Y) = nabla_X(Y) - nabla_Y(X) - [X, Y]. Here X, Y are vector fields on M.
The connection nabla is said to be symmetric if its torsion tensor S vanishes.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form TorsionTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-TorsionTensor.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
Example 2.
Define a frame on M and use this frame to specify a connection C2 on the tangent space of M. While the connection C2 is "symmetric" in its covariant indices, it is not a symmetric connection.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, CovariantDerivative, Physics[D_], DirectionalCovariantDerivative
Download Help Document