Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[RaiseLowerIndices] - raise or lower a list of indices of a tensor
Calling Sequences
RaiseLowerIndices(g, T, Indices)
RaiseLowerIndices(h, T, Indices)
Parameters
g - a metric tensor
h - the inverse of a metric tensor
T - a tensor
Indices - a list of integers, referring to the arguments of T
Description
A metric tensor g is a symmetric, covariant, rank 2, non-degenerate tensor. The inverse of a metric tensor h is a symmetric, contravariant, rank 2 non-degenerate tensor.
If X is a vector field or rank 1 contravariant tensor, then we can use the metric g to define a rank 1 covariant tensor field alpha = L_g(X) by alpha(Y) = g(X, Y), where Y is any vector field. In terms of components, if X = X^i partial_{x^i} and g = g_{ij} dx^i dx^j, then alpha = a_i dx^i where a_i = g_{ij} X^j. The mapping L_g, called the lowering map, is easily extended to higher rank tensors. For example, if T(alpha, beta, gamma) is a contravariant rank 3 tensor, then a mixed type S of covariant rank 2 and contravariant rank 1 can be defined by lowering, say the 1st and 3rd indices of T, by setting S(X, beta, Y) = T((L_g(X), beta, L_g(Y)).
The lowering map L_g from rank 1 contravariant tensor fields to rank 1 covariant tensor fields is invertible. The inverse map from rank 1 covariant tensor fields to rank 1 contravariant tensor fields is called the raising map R_h and is defined in terms of the inverse h of the metric g. If X = R_h(alpha), then in terms of components X^i = h^{ij} a_j, where [h^{ij}] is the inverse matrix for [g_{ij}]. As in the case of the lowering map, the raising map can be extended to higher rank tensors.
With the first calling sequence, RaiseLowerIndices(g, T, Indices) will use the metric g to lower the indices/arguments of T given in the list Indices. Each of these indices must be a contravariant index.
With the second calling sequence, RaiseLowerIndices(h, T, Indices) will use the inverse metric h to raise the indices/arguments of T given in the list Indices. Each of these indices must be a covariant index.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RaiseLowerIndices(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RaiseLowerIndices.
Examples
Example 1.
First create a 3 dimensional manifold M and define a metric g on M.
Use the program InverseMetric to find the inverse of the metric g.
Use g to lower the index of a vector field X.
Use g to lower the 1st and 3rd indices of a rank 4 tensor T.
Use h to raise the 2nd and 4th indices of the tensor T.
Example 2.
We can also raise and lower indices for tensors associated with a vector bundle other than the tangent bundle. First let us construct a rank 2 vector bundle over a 2 dimensional base.
Define a fiber metric g on E.
Define a tensor field on the fibers of E.
Lower the 1st index of T with g.
Lower the 1st and 2nd indices of T with g.
See Also
DifferentialGeometry, Tensor, ContractIndices
Download Help Document