Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[ParallelTransportEquations] - calculate the parallel transport equations for a linear connection on the tangent bundle or a linear connection on a vector bundle
Calling Sequences
ParallelTransportEquations(C, Y, Gamma, t)
Parameters
C - a list of functions of a single variable, defining the components of a curve on a manifold M, with respect to a given coordinate system
Y - a vector field defined along the curve C
Gamma - a connection on the tangent bundle to a manifold M or a connection on a vector bundle E -> M
t - the curve parameter
Description
Let M be a manifold and let nabla be a linear connection on the tangent bundle of M or a connection on a vector bundle E -> M. If C is a curve in M with tangent vector T, then the parallel transport equations for a vector field Y along C are then linear, first order ODEs defined by nabla_T(Y) = 0.
The procedure ParallelTransportEquations(C, Y, Gamma, t) returns the vector nabla_T(Y).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ParallelTransportEquations(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-ParallelTransportEquations.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
To define the parallel transport equations along C, we first define a curve on M by specifying a list of functions of a single variable t. We also define a vector field Y with coefficients depending on the curve parameter.
The program ParallelTransportEquations returns a vector whose components define the parallel transport equations.
To solve these parallel transport equations use the DGinfo command in the Tools package to obtain the coefficients of V as a set. Pass the resulting system of 1st order ODEs to dsolve.
Back substitute the solution into the vector field Y.
Example 2.
First create a rank 2 vector bundle E -> M dimensional manifold M and define a connection on E.
Define a curve C in M.
To solve these parallel transport equations use DGinfo to obtain the coefficients of V as a set. Pass the result to dsolve.
See Also
DifferentialGeometry, Tensor, Christoffel, Connection, CovariantDerivative, DGinfo, DirectionalCovariantDerivative
Download Help Document