Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[NPDirectionalDerivatives] - create procedures for the Newman-Penrose directional derivatives
Calling Sequences
NPDirectionalDerivatives(NTetrad, output)
NPDirectionalDerivatives(Fr, output)
Parameters
NTetrad - a list of 4 vectors defining a null tetrad
Fr - the name of an initialized anholonomic frame, created from a null tetrad
output - (optional) keyword argument output = "sequence"
Description
Let g be a metric with signature [1, -1, -1, -1] and [L, N, M, barM ] a null tetrad for g. The Newman-Penrose directional derivative operators take derivatives of functions in the directions of the 4 vectors of the tetrad. See Newman and Penrose, Stewart.
The NPDirectionalDerivatives command returns a table with 4 entries "D", "Delta", "delta", "barDelta". These are the customary labels assigned to the NP directional derivative operators. With optional keyword argument output = "sequence, the directional derivative operators are returned as a sequence of 4 Maple procedures.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NPDirectionalDerivatives(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NPDirectionalDerivatives.
Examples
Example 1.
Define a manifold S with coordinates [t, x, y, z].
Define a metric g.
Define a null tetrad NTetrad for the metric g. Use GRQuery to verify that NTetrad is a null tetrad.
Calculate the NP directional derivative operators defined by the null tetrad NTetrad. The result is a table with 4 indices.
The individual directional derivatives operators can be extracted from the table NPDirDer.
Note that this coincides with the Lie derivative of f(t, x, y, z) with respect to the first vector in NTetrad.
Example 2.
With the keyword argument output = "sequence", the command NPDirectionalDerivatives will return the directional derivatives operators as a sequence. (Note that the name D is protected by Maple.)
Example 3.
When working with the NP formalism, it is usually advantageous to work with the anholonomic frame defined by the null tetrad. To create anholonomic frames in DifferentialGeometry, see FrameData.
We can now calculate the directional derivatives operators for the null tetrad with the second calling sequence.
See Also
DifferentialGeometry, Tensor, LieDerivative, GRQuery, NullTetrad
Download Help Document