Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[MetricDensity] - use a metric tensor to create a scalar density of a given weight
Calling Sequences
MetricDensity(g, r)
Parameters
g - a metric tensor
r - a rational number
option - (optional) the keyword argument detmetric
Description
If g is a metric with components g_{ij}, then rho = (determinant(g_{ij}))^(r/2) is a scalar density of weight r.
The program MetricDensity(g, r) returns the scalar density rho.
It is assumed that the metric g has positive determinant. To calculate the proper metric density with respect to a metric with negative determinant, include the keyword argument detmetric = -1.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form MetricDensity(...) only after executing the commands with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-MetricDensity.
Examples
Example 1.
First create a manifold M and define a metric tensor on the tangent space of M.
Use g to make a tensor density of weight 1.
Display the density type of rho1.
Example 2.
For indefinite metrics, the optional argument detmetric = -1 can be used to ensure that the metric density is real.
Example 3.
First create a rank 3 vector bundle E over a two-dimensional manifold M and define a metric tensor on the fibers of E.
Use g3 to make a tensor density of weight -1.
Display the density type of rho3.
See Also
DifferentialGeometry, Tensor, DGinfo, RaiseLowerIndices, Physics[g_]
Download Help Document