Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[Connection] - define a linear connection on the tangent bundle or on a vector bundle
Calling Sequences
Connection(C)
Parameters
C - the component of the connection to be defined, entered as a type (1, 2) tensor
Description
Let M be a manifold and let chi(M) be the module (over the ring C(M) of all smooth functions on M) of vector fields on M. Then a linear connection nabla on the tangent bundle of M is a mapping chi(M) x chi(M) -> chi(M) which is C(M) linear in its first argument and a derivation on its second argument. If vector fields X_1, X_2, ..., X_n define a local frame on M, then the coefficients Gamma^k_{ij} of nabla with respect to this frame are defined by nabla_{X_i} X_j = Gamma^k_{ji} X_k.
More generally, let E -> M be a vector bundle and let Sigma(M) be the module (over the ring C(M) of all smooth functions on M) of sections of E. Then a connection nabla on E is a mapping chi(M) x Sigma(M) -> Sigma(M) which is linear in its first argument and a derivation on it second argument. If vector fields X_1, X_2, ..., X_n define a local frame on M and Z_1, Z_2, ..., Z_r a local basis for the sections of E, then the coefficients Gamma^a_{bi} of nabla with respect to these frames are defined by nabla_{X_i} Z_b = Gamma^a_{bi} Z_a.
Within the DifferentialGeometry package, connections are displayed using the tensor notation Gamma^k_{ji} omega^j X_k omega^i or Gamma^a_{bi} eta^b Z_a omega^i, where the omega^j are the dual coframe to the X_i and the eta^b are the dual coframe to the Z_a.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Connection(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-Connection.
Examples
Example 1.
Create a 2 dimensional manifold M and define a connection on the tangent space of M.
Example 2.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
Example 3.
Create a rank 3 vector bundle E on M and define a connection on E.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CovariantDerivative , Physics[D_], CurvatureTensor , Physics[Riemann], DirectionalCovariantDerivative, GeodesicEquations, DGinfo, ParallelTransportEquations
Download Help Document