Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[ConformalKillingVectors] - calculate the conformal Killing vectors for a given metric
Calling Sequences
ConformalKillingVectors(g, options )
Parameters
g - a metric tensor on a manifold
options - any of the following keywords arguments: ansatz, unknowns, auxiliaryequations, coefficientvariables, parameters, output
Description
A vector field is called a conformal Killing vector for the metric if, where denotes Lie differentiation with respect to and is a function (proportional to the divergence of ). If and denotes covariant differentiation with respect to the given metric, then this equation can be written as The Killing vectors of are the solutions to this equation with The set of all conformal Killing vectors forms a Lie algebra of vector fields.
The program ConformalKillingVectors generates the defining system of 1st order PDE for a conformal vector field and uses pdsolve to find the solutions to these PDE.
The command ConformalKillingVectors returns a sequence of two lists. The first list contains the non-trivial conformal Killing vectors and the second the Killing vectors. If there are no non-trivial conformal Killing vector fields then the first list is empty.
The keyword argument coefficientvariables allows the user to specify the coefficients functions in the conformal Killing vector as functions of the variables .
The exact form of the conformal Killing vector can be specified with the keyword argument ansatz . For example, if the coordinates on the underlying manifold are and are defined vectors, then one may solve for conformal Killing vectors of the form . In this situation the unknown functions must be explicitly specified with the keyword argument unknowns, for example, unknowns
When using the keyword argument ansatz, additional algebraic or differential conditions may be imposed upon the unknowns using the keyword argument auxiliaryequations Here is a list of the auxiliary equations to be added to the conformal Killing equations.
If the metric depends upon a number of unspecified parameters (either constants or functions), then the keyword argument parameterswhere is the list of parameters, will invoke case-splitting with respect to these parameters. Special values of the parameters, where either the number or the explicit form of the conformal Killing vectors changes, are calculated.
With keyword argument output = the defining partial differential equations for the conformal Killing vectors are returned. The option output = returns the general conformal Killing vector in terms of a number of arbitray constants , ... . The option output = returns a list of vectors which form a basis for the solution space. The default value of this keyword argument is output =
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ConformalKillingVectors(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-ConformalKillingVectors(...).
Examples
Example 1.
We find the conformal Killing vectors for the Euclidean metric in 3 dimensions.
There are a total of 10 conformal Killing vectors, 6 of which are Killing vectors.
We can check this result by calculating the Lie derivative of the metric with respect to these vector fields (see LieDerivative) . We see that the vector fields are conformal Killing tensors and that the vector fields are Killing vectors.
We can use the LieAlgebraData command in the LieAlgebras package to calculate the structure equations for the Lie algebra of conformal Killing vectors.
This output shows, for example, that the Lie bracket of the first and third vector fields in is minus the first vector field.
The Lie algebra of conformal Killing vector fields is a simple Lie algebra, that is, it is indecomposable and semi-simple.
We check these properties using the Query command from the LieAlgebras package.
Example 2.
We look for conformal Killing vector fields for the metric , of the special form specified by the vector .
Example 3.
We look for conformal Killing vector fields for the metric which have constant divergence. These are also known as homothetic vector fields.
Example 4.
We find the general conformal Killing vector for the metric depending upon 10 constants.
Example 5.
We calculate the conformal Killing vector fields for the metric which depends upon 3 parameters , where . For generic values of the parameters there are no non-trivial conformal Killing vectors. However, there are non-trivial conformal Killing vectors in 3 exceptional cases :
Exceptional Case 1:
Exceptional Case 2:
Exceptional Case 3:
Generic Case.
See Also
DifferentialGeometry, Tensor, ConformalKillingVectors, ConformalKillingTensors, KillingSpinors, KillingTensors, KillingVectors, KillingYanoTensors
Download Help Document