Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[BelRobinson] - calculate the Bel-Robinson tensor
Calling Sequences
BelRobinson(g, W, indexlist)
Parameters
g - a metric tensor on a 4-dimensional manifold
W - (optional) the Weyl tensor of the metric g
indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"
Description
The Bel-Robinson tensor B_{ijhk} is a covariant rank 4 tensor defined in terms of the Weyl tensor W_{ijhk} on a 4-dimensional manifold by (see, for example, Penrose and Rindler Vol. 1)
B_{ijhk} = 1/4 (W_{ilhm}W_j^l_k^m - 1/2 (g_{ij} W_{lmhn} + g_{il} W_{mjhn} + g_{im} W_{jlhn}) W^{lm}_k^n).
The Bel-Robinson tensor is totally symmetric: B_{ijhk} = B_{jihk} = B_{hjik} = B_{kjhi}.
The Bel-Robinson tensor is trace-free: g^{ij} B_{ijhk} = 0.
If g is an Einstein metric, that is, R_{ij} = Lambda g_{ij} (where R_{ij} is the Ricci tensor for the metric g and Lambda is a constant), then the covariant divergence of Bel-Robinson vanishes: g^{il} nabla_l(B_{ijhk}) = 0. Here nabla_l denotes the covariant derivative with respect to the Christoffel connection for g.
The keyword argument indexlist = ind allows the user to specify the index structure for the Bel-Robinson tensor. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form B^{ijhk} is returned.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BelRobinson(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BelRobinson.
Examples
Example 1.
First create a 4-dimensional manifold M and define a metric g on M. The metric shown below is a homogenous Einstein metric (see (12.34) in Stephani, Kramer et al).
Calculate the Bel-Robinson tensor for the metric g. The result is clearly a symmetric tensor.
Use the optional keyword argument indexlist to calculate the contravariant form of the Bel-Robinson tensor.
The tensor B is trace-free.
The covariant divergence of the tensor B1 vanishes. To check this, first calculate the Christoffel connection C for the metric g and then calculate the covariant derivative of B1.
The divergence of the Bel-Robinson tensor is not automatically zero; the divergence vanishes when the metric g is an Einstein metric. To check this, compute the Ricci tensor of g.
The Weyl tensor, if already calculated, can be used to quickly compute the Bel-Robinson tensor.
See Also
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, RicciTensor, WeylTensor
Download Help Document