Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Series] - find the derived series, lower central series, Upper central series of a Lie algebra or a Lie subalgebra
Calling Sequences
Series(AlgName, keyword)
Series(S, keyword)
Parameters
AlgName - (optional) the name of a Lie algebra g
keyword - a string, one of "Derived", "Lower", "Upper"
S - a list of vectors defining a basis for a Lie subalgebra of a Lie algebra g
Description
The derived series of a Lie algebra is the sequence of ideals D^k(g) in g defined inductively by D^0(g) = g and D^(k + 1)(g) = [D^k(g), D^k(g)]. Note that D^(k + 1)(g) is contained in D^k(g).
The lower central series of a Lie algebra is a sequence of ideals L^k(g) in g defined inductively by L^0(g) = g and L^(k + 1)(g) = [g, L^k(g)]. Note that L^(k + 1)(g) is contained in L^k(g).
The upper central series of a Lie algebra is a sequence of ideals C^k(g) in g defined inductively by C^0(g) = GeneralizedCenter(0) and C^(k + 1)(g) = GeneralizedCenter(C^k(g)). Note that C^(k)(g) is contained in C^(k + 1)(g). If h is an ideal of the Lie algebra g, then GeneralizedCenter(h) is the ideal of vectors x in g such that [x,y] in h for all y in g.
LieAlgebraSeries(AlgName, keyword) calculates the series defined by the keyword for the Lie algebra AlgName. If the first argument AlgName is omitted, then the appropriate series of the current Lie algebra is found.
LieAlgebraSeries(S, keyword) calculates the series defined by the keyword for the Lie subalgebra S (viewed as a Lie algebra in its own right).
LieAlgebraSeries returns a list of list of vectors L = [A_1, A_2, ...] where A_i is a basis for the (i - 1) term in the appropriate series. The list L with A_m terminates if [i] A_(m - 1) = A_m; or [ii] in case of the derived and lower series if A_m = []; or [iii] in the case of the upper series A_1 = [] or A_m = all of g.
The dimensions of the subalgebras in these series can be easily computed with the Maple map and nops commands.
The command Series is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Series(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Series(...).
Examples
Example 1.
First we initialize a Lie algebra and display the multiplication table.
The derived series:
The lower central series:
The upper central series:
Example 2.
We compute the different series for the subalgebra S = [e1, e2, e3, e4].
See Also
DifferentialGeometry, LieAlgebras, BracketOfSubspaces, Center, Centralizer, GeneralizedCenter, Query[Nilpotent], Query[Solvable]
Download Help Document