Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[LieAlgebraData] - convert different realizations of a Lie algebra to a Lie algebra data structure
Calling Sequence
LieAlgebraData(LieAlgebraPresentation)
Parameters
LieAlgebraPresentation - one of several different formats for defining a Lie algebra
Description
In the LieAlgebras package, the command DGsetup is used to initialize a Lie algebra -- that is, to define the basis elements for the Lie algebra and its dual and to store the structure constants for the Lie algebra in memory. The first argument for DGsetup is a Lie algebra data structure which contains the structure constants in a standard format used by the LieAlgebras package.
The purpose of the function LieAlgebraData(LieAlgebraPresentation) is to convert various different presentations of a Lie algebra, which are commonly used in differential geometry and Lie theory, into the standard Lie algebra data structure required by the DGsetup command.
The types of Lie algebra presentations which can currently be converted to a Lie algebra data structure are:
FormStructureEquations LieAlgebraName MatrixAlgebra StructureConstants Subalgebra VectorFields VectorStructureEquations
Further information is available under ?LieAlgebraData, LieAlgebraPresentation, where LieAlgebraPresentation is from the above list.
The command LieAlgebraData is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form LieAlgebraData(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-LieAlgebraData(...).
Examples
Example 1. LieAlgebraData(StructureConstants)
In this example we create a 3 dimensional Array, C, of structure constants and use this Array to create a Lie algebra data structure for a Lie algebra called Ex1.
Example 2. LieAlgebraData(VectorStructureEquations)
In this example we create a Lie algebra data structure for a Lie algebra called Ex2 from a list of structure equations for the Lie brackets.
Example 3. LieAlgebraData(FormStructureEquations)
In this example we create a Lie algebra data structure for a Lie algebra called Ex3 from a list of structure equations for the exterior derivatives of the dual 1-forms.
Example 4. LieAlgebraData(MatrixAlgebra)
In this example we create a Lie algebra data structure for a Lie algebra called Ex4 from a list of matrices.
Example 5. LieAlgebraData(LieAlgebraName)
In this example we create a Lie algebra data structure for a Lie algebra called Ex5 from a previously initialized Lie algebra.
First we initialize a Lie algebra Ex5.
Applying LieAlgebraData to Ex5 gives back the Lie algebra data structure we started from.
Example 6. LieAlgebraData(Subalgebra, "LieAlgebraData")
In this example we create a Lie algebra data structure from a subalgebra of a Lie algebra.
First we initialize a Lie algebra Alg5.
The vectors [e1, e2, e3] define a Lie subalgebra which we wish to initialize as a Lie algebra in its own right.
See Also
DifferentialGeometry, LieAlgebras, Query
Download Help Document