Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[LieAlgebraExtension] - calculate a right or a central extension of a Lie algebra
Calling Sequences
Extension(AlgName1, A, AlgName2)
Extension(AlgName1, beta, AlgName2)
Parameters
AlgName1 - a name or string, the name of the Lie algebra to be extended
A - a transformation derivation
beta - a closed 2-form
AlgName2 - a name or string, the name to be given to the Lie algebra extension
Description
Let g be a Lie algebra and let Phi: g -> g be a derivation on g. Then the right extension of g by Phi is the Lie algebra k = g + R (R = real numbers) with Lie bracket [(x, a), (y, b)] = [[x, y] + b*Phi(x) - a*Phi(y), 0], where x, y in g and a, b in R. The extension k is said to be trivial if k splits as a Lie algebra direct sum k = g' + R, where g' is isomorphic to g. The extension k is trivial precisely when Phi is an inner derivation.
Let g be a Lie algebra and let beta be a closed 2-form on g. Then the central extension of g by Phi is the Lie algebra k = g + R (R = real numbers) with Lie bracket [(x, a), (y, b)] = [[x, y], beta(x, y)], where x, y in g and a, b in R. The extension k is said to be trivial if k splits as a Lie algebra direct sum k = g' + R, where g' is isomorphic to g. The extension k is trivial precisely when beta is exact, that is, beta = d(alpha).
LieAlgebraExtension computes a right extension when its second argument is a matrix and a central extension when the second argument is a 2-form. The procedure returns the Lie algebra data structure for the extended algebra.
The command Extension is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Extension(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Extension(...).
Examples
Example 1.
Calculate two right extensions and show that the first is trivial and the second is not.
First initialize the Lie algebra Alg1 and display the multiplication table.
Here are two derivations we shall use to make right extensions.
Use the matrix A1 to make a right extension.
Initialize this Lie algebra. Since it was constructed using an inner derivation, it should be a trivial extension. This we check using the DecomposeLieAlgebracommand.
Repeat these computations using the outer derivation A2.
Initialize this right extension. Since it was constructed using an inner derivation, it should be a trivial extension. This we check using the Decompose command.
Example 2.
Calculate two central extensions and show that the first is trivial and the second is not.
First initialize the Lie algebra Alg4 and display the multiplication table.
Now display the exterior derivatives of the 1-forms for Alg1.
Define a pair of 2-forms and check that they are closed.
Use beta1 to make a central extension.
Initialize this Lie algebra. Since the form beta1 is exact, this central extension is trivial. This we check using the Decompose command.
Now make the central extension using beta2. This extension is indecomposable.
See Also
DifferentialGeometry, LieAlgebras, Adjoint, DecomposeAlgebra, Derivations, ExteriorDerivative, MultiplicationTable, Query
Download Help Document