Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Complexify] find the complexification of a Lie algebra
Calling Sequences
Complexify(AlgName1, AlgName2)
Parameters
AlgName1 - name or string, the name of a Lie algebra g
AlgName2 - name or string, the name for the complexification of g
Description
The complexification of a real Lie algebra g of dimension n is a real Lie algebra of dimension 2n. If e1, e2, ..., en is a basis for g, then e1, e2, ..., en, Ie1, Ie2, ..., Ien, where I^2 = - 1, is a basis for the complexification of g.
Complexify(AlgName1, AlgName2) calculates the complexification of the Lie algebra g defined by AlgName1.
A Lie algebra data structure is returned for the complexified Lie algebra with name AlgName2. A Lie algebra data structure contains the structure constants of a Lie algebra in a standard format used by the LieAlgebras package.
The command Complexify is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Complexify(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Complexify(...).
Examples
Example 1.
First we initialize a Lie algebra and then display its multiplication table.
We complexify Alg1 and call the result Alg2.
We note that the original Lie algebra [e1, e2, e3], as a subalgebra of its complexification, admits a symmetric complement.
See Also
DifferentialGeometry, LieAlgebras, Query[SymmetricPair]
Download Help Document