Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[VerticalHomotopy] - apply the vertical homotopy operator to a bi-form on a jet space
Calling Sequences
VerticalHomotopy(omega)
Parameters
omega - a differential bi-form on the jet space J^k(R^n, R^m)
Description
Let omega be a bi-form of degree (r, s) on J^k(R^n, R^m). Then omega is called dV closed if dV(omega) = 0 where dV denotes the vertical exterior derivative and dV exact if there exists a bi-form eta of degree (r, s - 1) on J^l(R^n, R^m) such that omega = dV(eta).
If dV(omega) = 0 then there are numerous algorithms for finding a bi-form eta such that omega = dV(eta). One approach is to use the vertical homotopy operators. These homotopy operators are very similar to the usual homotopy operators for the deRham complex.
The optional arguments available to DeRhamHomotopy can be invoked with VerticalHomotopy.
If omega is a bi-form of degree (r, s) with s > 1, then VerticalHomotopy(omega) returns a bi-form of degree (r, s - 1).
The command VerticalHomotopy is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form VerticalHomotopy(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-VerticalHomotopy(...).
Examples
with(DifferentialGeometry): with(JetCalculus):
Example 1.
Create the jet space J^3(E) for the bundle E = R^2 x R with coordinates (x, y, u) -> (x, y).
DGsetup([x, y], [u], E, 1):
Show that the Euler-Lagrange form for omega1 is 0 so that omega1 is dH exact.
omega1 := evalDG(Cu[] &w Cu[1] &w Cu[2]);
VerticalExteriorDerivative(omega1);
Apply the vertical homotopy operator to omega1.
eta1a := VerticalHomotopy(omega1);
Check that the vertical exterior derivative of eta1a gives omega1.
omega1 &minus VerticalExteriorDerivative(eta1a);
Alternatives to eta1a can be obtained using the path = "zigzag" option for the VerticalHomotopy command.
eta1b := VerticalHomotopy(omega1, path = "zigzag");
eta1b := VerticalHomotopy(omega1, path = "zigzag", variableorder = [u[1], u[2], u[], u[1, 1], u[1, 2], u[2, 2]]);
See Also
DifferentialGeometry, JetCalculus, HorizontalExteriorDerivative, HorizontalHomotopy, VerticalExteriorDerivative, ZigZag
Download Help Document