Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[VerticalExteriorDerivative] - calculate the vertical exterior derivative of a bi-form on a jet space
Calling Sequences
VerticalExteriorDerivative(omega)
Parameters
omega - a differential bi-form on the jet space of a fiber bundle E -> M
Description
Every differential form on a jet space can be expressed as a sum of wedge products of 1-forms on M and contact 1-forms. A differential form omega is called a bi-form of degree (r, s) if it is a sum of wedge products of r 1-forms on M and s contact 1-forms. Alternatively, omega is of type (r, s) if omega(X_1, X_2, ... X_(r + s)) = 0 whenever more than r of the vector fields X_i are total vector fields or more than s of the vector fields X_i are vertical vector fields on J^k(E) -> M. The non-negative integer r is called the horizontal degree of omega. The non-negative integer s is called the vertical degree of omega.
If omega is called a bi-form of degree (r, s), then its exterior derivative d(omega) is a sum of two bi-forms, one of type (r + 1, s), the other of type (r, s + 1). The type (r + 1, s) part is called the horizontal exterior derivative of omega and is denoted by dH(omega). The type (r, s + 1) part is called the vertical exterior derivative of omega and is denoted by dV(omega). Thus d(omega) = dH(omega) + dV(omega) from which it follows that dH^2 = 0, dH dV = - dV dH and dH^2 = 0.
If (x^i) are local coordinates on M and D_i denotes total differentiation with respect to x^i, then dH(omega) = D_i(omega) Dx^i.
The command VerticalExteriorDerivative is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form VerticalExteriorDerivative(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-VerticalExteriorDerivative(...).
Examples
Example 1.
Create the jet space J^2(E) for the bundle E = R^2 x R^2 with coordinates (x, y, u, v) -> (x, y).
Calculate the vertical exterior derivative of a function.
Calculate the vertical exterior derivative of a type (1, 0) bi-form.
Calculate the vertical exterior derivative of a type (0, 2) bi-form.
See Also
DifferentialGeometry, JetCalculus, HorizontalExteriorDerivative, HorizontalHomotopy, VerticalHomotopy
Download Help Document