Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[TotalVector] - form the total part of a vector field
Calling Sequences
TotalVector(omega)
Parameters
X - a vector field or a generalized vector field on a fiber bundle E -> M
Description
The total part of a generalized vector field X on the bundle E -> M is the generalized vector field Y on E -> M such that Y - X is a vertical vector and Hook(Y, omega) = 0 for any contact 1-form omega on J^1(E).
The vertical vector Y - X is called the evolutionary part of the vector field X.
The command TotalVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form TotalVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalVector(...).
Examples
Example 1.
Create the jet space J^2(E) for the bundle E = R^2 x R^2 with coordinates (x, y) -> (u, v).
Define a vector X1 and compute its total part.
Define a vector X2 and compute its total part.
Define a vector X3 and compute its total part.
Example 2.
A total vector field always annihilates the first order contact 1-forms.
A vector field is always the sum of its total and evolutionary parts.
See Also
DifferentialGeometry, JetCalculus, EvolutionaryVector, Hook, Prolong
Download Help Document