Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[TotalJacobian] - find the Jacobian of a transformation using total derivatives
Calling Sequences
TotalJacobian(Phi)
Parameters
Phi - a transformation between two jet spaces
Description
Let E -> M and F -> N be two fiber bundles with dim(M) = m and dim(N) = n and let Phi: J^k(E) -> J^l(F) be a transformation. Let (x^i), i = 1, ... m be a system of local coordinates on M and let (y^a), a = 1, ... n be a system of local coordinates on N. Let F^a = y^a(Phi) be the y^a components of the map Phi--these are functions on J^k(E). Then the total Jacobian of Phi is the m x n Matrix [D_i F^a] where D_i denotes the total derivative with respect to x^i.
TotalJacobian returns the m x n matrix [D_i F^a].
The command TotalJacobian is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form TotalJacobian(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalJacobian(...).
Examples
Example 1.
First initialize several different jet spaces over bundles E1 -> M1, E2 -> M2, E3 -> M3. The dimension of the base spaces are dim(M1) = 2, dim(M2) = 1, dim(M3) = 3.
Define a transformation Phi1: J^2(E1) -> E2 and compute its total Jacobian (a 1 x 2 matrix).
Define a transformation Phi2: J^2(E1) -> E3 and compute its total Jacobian (a 3 x 2 matrix).
Define a transformation Phi3: J^1(E1) -> E1 and compute its total Jacobian (a 2 x 2 matrix).
See Also
DifferentialGeometry, JetCalculus, PushforwardTotalVector, TotalDiff, Transformation
Download Help Document