Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Overview of the GroupActions package
Description
The DifferentialGeometry:-GroupActions package provides basic symbolic capabilities for working with Lie groups, transformation groups and infinitesimal transformation groups.
For a given Lie algebra of vector fields (that is, an infinitesimal transformation group) on a manifold, important geometric information is provided by the (infinitesimal) isotropy subalgebras, their representations on the tangent space and the isotropy filtration. This information can be calculated with the GroupActions package.
The infinitesimal isometries of any metric tensor can be calculated and conversely, all metric tensors invariant with respect to a given infinitesimal transformation group can be found. More generally, the infinitesimal symmetries of any collection of vector fields, differential forms, tensor fields or connections can be found.
A global Lie group can be calculated for any solvable Lie algebra. The r-parameter transformation group for a given r-dimensional solvable infinitesimal transformation group can be determined.
Invariants and differential invariants for group actions can also be determined by the method of moving frames.
The GroupActions package is a subpackage of the DifferentialGeometry package. Each command in the GroupActions package can be accessed by using either the long form or the short form of the command name in the command calling sequence.
List of the GroupAction commands and subpackages
The following is a list of available commands and subpackages.
Action
InfinitesimalPseudoGroupNormalizer
InfinitesimalSymmetriesOfGeometricObjectFields
InvariantGeometricObjectFields
InvariantVectorsAndForms
IsotropyFiltration
IsotropySubalgebra
LieGroup
LiesThirdTheorem
MatrixGroup
MovingFrames
A brief description of the package's commands is as follows.
Action: find the action of a solvable Lie group on a manifold from its infinitesimal generators.
InfinitesimalPseudoGroupNormalizer: find the normalizer of a finite dimensional Lie algebra of vector fields in an (infinite-dimensional) pseudo-Lie algebra of vector fields
InfinitesimalSymmetriesOfGeometricObjectFields: find the infinitesimal symmetries (vector fields) for a collection of vector fields, differential forms or tensors.
InvariantGeometricObjectFields: find the vector fields, differential forms, or tensors which are invariant with respect to a Lie algebra of vector fields.
InvariantVectorsAndForms: calculate a basis of left and right invariant vector fields and differential 1-forms on a Lie group.
IsotropyFiltration: find the infinitesimal isotropy filtration for a Lie algebra of vector fields.
IsotropySubalgebra: find the infinitesimal isotropy subalgebra of a Lie algebra of vector fields and infinitesimal isotropy representation.
LieGroup: create a module defining a Lie group.
LiesThirdTheorem: find a Lie algebra of pointwise independent vector fields with prescribed structure equations (solvable algebras only).
MatrixGroup: find the matrix group defined by a matrix algebra or by a matrix of 1-forms
MovingFrames: a small package for the method of moving frames.
See Also
DifferentialGeometry, JetCalculus, Library, LieAlgebras, Tensor, Tools
Download Help Document