Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
permgroup - represent a permutation group
Calling Sequence
permgroup(deg, gens)
Parameters
deg
-
degree of the permutation group
gens
set of generators for the permutation group
Description
The function permgroup is used as a procedure and an unevaluated procedure call. As a procedure, permgroup checks its arguments and then either exits with an error or returns the unevaluated permgroup call.
The first argument is the degree of the group, and should be an integer. The second argument is a set of group generators. Each generator is represented in disjoint cycle notation. The generators may be named or unnamed. A named generator is an equation; the left operand is the generator's name, the right operand is the permutation in disjoint cycle notation.
A permutation in disjoint cycle notation is a list of lists. Each sub-list represents a cycle; the permutation is the product of these cycles. The cycle represents the permutation which maps to , to , ..., to , and to . The identity element is represented by the empty list .
The permgroup function follows the convention that ``permutations act on the right''. In other words, if and are permutations, then the product of and , is defined such that for .
Examples
the following is not legal:
Error, (in permgroup) generators must represent products of disjoint cycles, but [[7, 2]] does not
See Also
grelgroup, subgrel
Download Help Document