Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
mtaylor - multivariate Taylor series expansion
Calling Sequence
mtaylor(f, v)
mtaylor(f, v, n)
mtaylor(f, v, n, w)
Parameters
f
-
algebraic expression
v
list or set of names or equations
n
(optional) non-negative integer
w
(optional) list of positive integers
Description
The mtaylor function computes a truncated multivariate Taylor series expansion of the input expression f, with respect to the variables v, to order n, using the variable weights w.
The variables v can be a list or set of names or equations. If is an equation, then the left-hand side of is the variable, and the right-hand side is the point of expansion. If is a name, then is assumed as the point of expansion.
If the third argument n is present then it specifies the ``truncation order'' of the series. The concept of ``truncation order'' used is ``total degree'' in the variables. If n is not present, the truncation order used is the value of the global variable Order, which is 6 by default.
If the fourth argument w is present it specifies the variable weights to be used (by default all 1). A weight of 2 will halve the order in the corresponding variable to which the series is computed.
Note: mtaylor restricts its domain to ``pure'' Taylor series, those series with non-negative powers in the variables.
Examples
See Also
coeftayl, poisson, series, taylor
Download Help Document