Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
inttrans[hankel] - Hankel transform
Calling Sequence
hankel(expr, t, s, nu)
Parameters
expr
-
expression, equation, or set of expressions and/or equations to be transformed
t
variable expr is transformed with respect to t
s
parameter of transform
nu
order of the transform
opt
option to run this under (optional)
Description
The hankel function computes the Hankel transform (F[nu](s)) of expr (f(t)), a linear transformation defined by:
The function returned is defined on the positive real axis only.
Expressions involving exponentials, products involving powers of t, trigonometrics (sin, cos) with linear arguments, and a variety of other functions can all be transformed.
The Hankel transform is self-inverting for nu > .
The hankel function can transform Bessel's operator, and if nu, derivatives of functions as well, and can be used in the solution of ODEs and PDEs.
The hankel function attempts to simplify an expression according to a set of heuristics and then match the result with a table of patterns. Entries can be added to this table by addtable(hankel, f(t), F(s), t, s), where F(s) is the transform of f(t), which may have an arbitrary number of parameters.
hankel recognizes the Dirac-delta (or unit-impulse) function as Dirac(t) and Heaviside's unit step function as Heaviside(t).
If the option opt is set to 'NO_INT', then the program will not resort to integration of the original problem if all other methods fail. This will increase the speed at which the transform will run.
The command with(inttrans,hankel) allows the use of the abbreviated form of this command.
Examples
Bessel's differential equation
Adding to the table
See Also
dsolve, inttrans, inttrans[addtable]
Download Help Document