Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
inttrans[fourier] - Fourier transform
Calling Sequence
fourier(expr, t, w)
Parameters
expr
-
expression, equation, or set of equations and/or expressions to be transformed
t
variable expr is transformed with respect to t
w
parameter of transform
opt
option to run this under (optional)
Description
The fourier function computes the Fourier transform (F(w)) of expr (f(t)) with respect to t, using the definition
Expressions involving complex exponentials, polynomials, trigonometrics (sin, cos) and a variety of functions and other integral transforms can be transformed.
The fourier function recognizes derivatives (diff or Diff) and integrals (int or Int).
Users can add their own functions to fourier's internal lookup table with the function inttrans[addtable].
fourier recognizes the Dirac-delta (or unit-impulse) function as Dirac(t) and Heaviside's unit step function as Heaviside(t).
The program first attempts to classify the function simply, from the lookup table. Then it considers various cases, including a piecewise decomposition, products, powers, sums, and rational polynomials. Finally, if all other methods fail, the program will resort to integration. If the option opt is set to 'NO_INT', then the program will not integrate. This will increase the speed at which the transform will run.
The command with(inttrans,fourier) allows the use of the abbreviated form of this command.
Examples
See Also
dsolve, inttrans, inttrans[addtable], inttrans[invfourier]
Download Help Document