Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Transitive Groups Naming Scheme
Description
This page briefly describes some of the notations introduced in the paper "On Transitive Permutation Groups" by J.H. Conway, A. Hulpke, and J. McKay, LMS J. Comput. Math. 1 (1998), 1-8. These notations are reminiscent of the notations used in "The Atlas of Finite Groups" by J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson.
These notations are used by the galois function.
Capital letters denote families of groups:
A : Alternating
F : Frobenius
E : Elementary
S : Symmetric
AL : Affine linear
C : Cyclic
M : Mathieu
D : Dihedral
Q_8 : Quaternionic group
Except for dihedral and Frobenius group, a name of the form , where is a family name, denotes the -th member of this family acting as a permutation group on points. For instance, is the symmetric group on 3 elements. Moreover, denotes the same abstract group, but not necessarily with the same action. For instance, is the alternating group on 4 elements acting transitively on a set of 6 elements. For dihedral and Frobenius groups, or denotes the group of order . For instance, and is the dihedral group with six elements acting transitively on a set of 6 elements.
An integer n stands for a cyclic group with n elements.
Let and be groups. Then
or indicates a group with a normal subgroup of structure , for which the corresponding quotient has structure .
specifies that the group is a split extension.
denotes a direct product where the action is the natural action on the Cartesian product of the sets.
denotes a subdirect product corresponding to two epimorphisms : and : where is a group of order . In other words, the group consists of elements in the direct product such that .
is the direct product of groups of structure .
denotes a wreath product.
is an imprimitive group derived from a semi-direct product. The group is the intersection of the block stabilizers. See the paper by Conway, Hulpke, and McKay for more information. In particular (where has degree ) is the permutational wreath product .
denotes a subgroup of . There exists two epimorphisms : and : (where the order of is , such that the group consists of elements in satisfying .
Lower case letters are used to distinguish different groups arising from the same general construction. See the paper by Conway, Hulpke, and McKay for more information.
See Also
combinat, group, group[transgroup], http://web.mat.bham.ac.uk/atlas/v2.0/
Download Help Document