Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
gfun[rectodiffeq] - convert a linear recurrence into a differential equation
Calling Sequence
rectodiffeq(eqns, u(n), f(z))
Parameters
eqns
-
single equation or set of equations
u
name; recurrence name
n
name; index of the recurrence u
f
name; function name
z
name; variable of the function z
Description
The rectodiffeq(eqns, u(n), f(z)) command converts a linear recurrence into a differential equation.
Let f be the generating function associated with the sequence u(n) where . The rectodiffeq function returns a linear differential equation with polynomial coefficients satisfied by f.
The input syntax is the same as for rsolve. The first argument is a single recurrence relation or a set containing one recurrence relation and boundary conditions. The recurrence relation is linear in the variable u, with polynomial coefficients in n. The terms of the sequence appearing in the relation should be of the form , with k as an integer.
The function returns either a single differential equation, or a set containing a differential equation and initial conditions.
Examples
See Also
dsolve, gfun, gfun/parameters, gfun[diffeqtorec], rsolve
Download Help Document