Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geometry[StretchRotation] - find the stretch-rotation of a geometric object
geometry[homology] - find the homology of a geometric object
geometry[SpiralRotation] - find the spiral-rotation of a geometric object
Calling Sequence
StretchRotation(Q, P, O, theta, dir, k)
homology(Q, P, O, theta, dir, k)
SpiralRotation(Q, P, O, theta, dir, k)
Parameters
Q
-
the name of the object to be created
P
geometric object
O
point which is the center of the homology
theta
number which is the angle of the homology
dir
name which is either clockwise or counterclockwise
k
number which is the ratio of the homology
Description
Let O be a fixed point in the plane, k a given nonzero real number, theta and dir denote a given sensed angle. By the homology ( or stretch-rotation, or spiral-rotation) we mean the product where is the rotation with respect to O an angle theta in direction dir and is the dilatation with respect to the center O and ratio k.
Point O is called the center of the homology, k the ratio of the homology, theta and dir the angle of the homology.
For a detailed description of Q (the object created), use the routine detail (i.e., detail(Q))
The command with(geometry,StretchRotation) allows the use of the abbreviated form of this command.
Examples
define the parabola with vertex at (0,0) and focus at (0,1/2)
See Also
geometry[dilatation], geometry[draw], geometry[objects], geometry[reflection], geometry[transformation]
Download Help Document